Apixaban Enhances Vasodilatation Mediated by Protease-Activated Receptor 2 in Isolated Rat Arteries
نویسندگان
چکیده
Apixaban (APX) is a direct inhibitor of factor X (FXa) approved for prophylaxis and treatment of deep venous thrombosis and atrial fibrillation. Because FXa activates protease-activated receptor 2 (PAR-2) in endothelium and vascular smooth muscle, inhibition of FXa by APX may affect vasomotor function. The effect of APX was assessed in vitro, by wire myography, in rat mesenteric resistance arteries (MRAs) and basilar arteries challenged with vasoconstrictors [phenylephrine (PE); 5-hydroxytryptamine (5-HT)], vasodilators [acetylcholine (ACh); sodium nitroprusside (SNP)] or with the PAR-2 peptide agonist SLIGRL. APX (10 μM) reduced the vasoconstriction to PE and 5-HT while did not change the vasodilatation to ACh or SNP. SLIGRL induced concentration-dependent vasodilation in pre-constricted arteries, that was reduced by incubation with the NO inhibitor NG-nitro-L-arginine (L-NNA) and abolished by endothelium removal. APX enhanced vasodilation to SLIGRL either in the presence or in the absence of L-NNA, but was ineffective in endothelium-denuded vessels. In preparations from heparin-treated rats (to inhibit FXa) APX did not change the vasodilation to SLIGRL. FXa enzymatic activity, detected in mesentery homogenates from controls, was inhibited by APX, whereas APX-sensitive enzymatic activity was undetectable in homogenates from heparin-treated rats. Immunoblot analysis showed that incubation of MRA or aorta with APX increased the abundance of PAR-2, an effect not seen in MRA from heparin-treated rats or in endothelium-denuded aortas. In conclusion, inhibition of FXa by APX increases vasodilatation mediated by PAR-2. APX may act by inhibiting PAR-2 desensitization induced by endogenous FXa. This effect could be useful in the context of endothelial dysfunction associated to cardiovascular diseases.
منابع مشابه
Evidence for selective effects of chronic hypertension on cerebral artery vasodilatation to protease-activated receptor-2 activation.
BACKGROUND AND PURPOSE Protease-activated receptor-2 (PAR-2) can be activated after proteolysis of the amino terminal of the receptor by trypsin or by synthetic peptides with a sequence corresponding to the endogenous tethered ligand exposed by trypsin (eg, SLIGRL-NH(2)). PAR-2 mediates nitric oxide (NO)-dependent dilatation in cerebral arteries, but it is unknown whether PAR-2 function is alte...
متن کاملProtection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice
BACKGROUND Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angi...
متن کاملThe vasodilatory action of telmisartan on isolated mesenteric artery rings from rats
Objective(s): Angiotensin Ⅱ type 1 receptor blockers (ARBs) represent one of the widely used antihypertensive agents. In addition to anti-hypertension effect, some ARBs also show other molecular effects such as activating peroxisome proliferator-activated receptor-γ and so on. Here we studied the effects of telmisartan on the rat isolated mesenteric artery rings pre-contracted by phenylephrine ...
متن کاملLigustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release.
The purpose of the present study was to investigate the effect of ligustilide on vasodilatation in rat mesenteric artery and the mechanisms responsible for it. Isometric tension of rat mesenteric artery rings was recorded by a sensitive myograph system in vitro. The results showed that ligustilide at concentrations more than 10 microM relaxed potassium chloride (KCl)-preconstricted rat mesenter...
متن کاملActivation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity.
AIMS n-3 Polyunsaturated fatty acids (PUFAs) are known to protect the cardiovascular system and improve blood pressure control. These important dietary constituents are converted into bioactive metabolites, but their role in regulation of the cardiovascular system is unclear. In particular, the functions of the cytochrome P450 (CYP) metabolites of n-3 PUFAs remain virtually unexplored. In this ...
متن کامل